tFix calculation of reynolds number and visualization calls - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
HTML git clone git://src.adamsgaard.dk/sphere
DIR Log
DIR Files
DIR Refs
DIR LICENSE
---
DIR commit fd6493eb51899c881c017dff8bae975365da046f
DIR parent 439019dc191d4e17968abd9d9ea70164a2489b84
HTML Author: Anders Damsgaard <anders@adamsgaard.dk>
Date: Mon, 2 Sep 2019 15:31:10 +0200
Fix calculation of reynolds number and visualization calls
Diffstat:
M python/sphere.py | 25 +++++++++++++------------
1 file changed, 13 insertions(+), 12 deletions(-)
---
DIR diff --git a/python/sphere.py b/python/sphere.py
t@@ -2097,7 +2097,7 @@ class sim:
dporos.SetNumberOfTuples(grid.GetNumberOfPoints())
# array of scalars: Reynold's number
- self.ReynoldsNumber()
+ Re = self.ReynoldsNumber()
Re = vtk.vtkDoubleArray()
Re.SetName("Reynolds number [-]")
Re.SetNumberOfComponents(1)
t@@ -2143,7 +2143,7 @@ class sim:
vel.SetTuple(idx, self.v_f[x, y, z, :])
poros.SetValue(idx, self.phi[x, y, z])
dporos.SetValue(idx, self.dphi[x, y, z])
- Re.SetValue(idx, self.Re[x, y, z])
+ Re.SetValue(idx, Re[x, y, z])
if self.cfd_solver[0] == 1:
k.SetValue(idx, self.k[x, y, z])
K.SetValue(idx, self.K[x, y, z])
t@@ -6083,7 +6083,8 @@ class sim:
plt.close(fig)
def plotSinFunction(self, baseval, A, f, phi=0.0, xlabel='$t$ [s]',
- ylabel='$y$', plotstyle='.', outformat='png'):
+ ylabel='$y$', plotstyle='.', outformat='png',
+ verbose=True):
'''
Plot the values of a sinusoidal modulated base value. Saves the output
as a plot in the current folder.
t@@ -6742,9 +6743,8 @@ class sim:
tau[i] += -sb.force[j, 0]/A
if i > 0:
- xdisp[i] = self.xdisp[i-1] + \
- sb.time_file_dt[0]*shearvel
- sigma_eff[i] = sb.w_force[0] / A
+ xdisp[i] = xdisp[i-1] + sb.time_file_dt[0]*shearvel
+ sigma_eff[i] = sb.w_force[0]/A
sigma_def[i] = sb.w_sigma0[0]
# dilation in meters
t@@ -6770,7 +6770,7 @@ class sim:
shear_strain = xdisp/w_x0
# Copy values so they can be modified during smoothing
- shear_strain_smooth = self.shear_strain
+ shear_strain_smooth = shear_strain
tau_smooth = tau
sigma_def_smooth = sigma_def
t@@ -6787,14 +6787,14 @@ class sim:
if smoothing_window == 'flat': # moving average
w = numpy.ones(smoothing, 'd')
else:
- w = getattr(np, smoothing_window)(smoothing)
+ w = getattr(self.np, smoothing_window)(smoothing)
y = numpy.convolve(w/w.sum(), s, mode='same')
tau_smooth = y[smoothing-1:-smoothing+1]
# Plot stresses
if outformat != 'txt':
shearinfo = "$\\tau_p$={:.3} Pa at $\gamma$={:.3}".format(\
- self.tau_p, self.tau_p_shearstrain)
+ tau_p, tau_p_shearstrain)
fig.text(0.01, 0.01, shearinfo, horizontalalignment='left',
fontproperties=FontProperties(size=14))
ax1 = plt.subplot2grid((2, 1), (0, 0))
t@@ -6817,9 +6817,9 @@ class sim:
ax2.set_ylabel('Dilation, $\Delta h/(2\\bar{r})$ [m]')
if smoothing > 2:
ax2.plot(shear_strain_smooth[1:-(smoothing+1)/2],
- dilation_smooth[1:-(smoothing+1)/2], '-')
+ dilation[1:-(smoothing+1)/2], '-')
else:
- ax2.plot(shear_strain, self.dilation, '-')
+ ax2.plot(shear_strain, dilation, '-')
ax2.grid()
if xlim:
t@@ -6927,7 +6927,7 @@ class sim:
tau_p = tau_eff[i]
tau_p_shearstrain = xdisp[i]/w_x0
- shear_strain = self.xdisp/w_x0
+ shear_strain = xdisp/w_x0
# Plot stresses
if outformat != 'txt':
t@@ -7320,6 +7320,7 @@ class sim:
return
# Optional save of figure content
+ filename = ''
if xlim:
filename = '{0}-{1}-{3}.{2}'.format(self.sid, method, outformat,
xlim[-1])