tsmall corrections - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
HTML git clone git://src.adamsgaard.dk/sphere
DIR Log
DIR Files
DIR Refs
DIR LICENSE
---
DIR commit db7408de0d0dcc2b1b2d951eb69f499961de9d81
DIR parent aba33eb02abf7b0213f694c21402793291b459a8
HTML Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Thu, 14 Aug 2014 14:55:37 +0200
small corrections
Diffstat:
M python/sphere.py | 14 ++++++--------
1 file changed, 6 insertions(+), 8 deletions(-)
---
DIR diff --git a/python/sphere.py b/python/sphere.py
t@@ -4158,7 +4158,6 @@ class sim:
stopped at the end of the simulation (i.e. flat curve).
'''
t = numpy.empty(self.status())
- dH = numpy.empty_like(t)
H = numpy.empty_like(t)
sim = sphere.sim(self.sid, fluid=self.fluid)
sim.readfirst(i)
t@@ -4167,18 +4166,16 @@ class sim:
sim.readstep(i)
t[i-1] = sim.time_current[0]
H[i-1] = sim.w_x[0]
- dH[i-1] = h - sim.w_x[0]
# find consolidation parameters
self.H0 = H[0]
- #self.H100 = h - dh[-1]
self.H100 = H[-1]
self.H50 = (self.H0 + self.H100)/2.0
T50 = 0.197 # case I
# find the time where 50% of the consolidation (H50) has happened by
- # linear interpolation. The values in dh are expected to be
- # monotonically decreasing! See Numerical Recipies p. 115
+ # linear interpolation. The values in H are expected to be
+ # monotonically decreasing. See Numerical Recipies p. 115
i_lower = 0
i_upper = self.status()-1
while (i_upper - i_lower > 1):
t@@ -4198,9 +4195,10 @@ class sim:
plt.title('Consolidation coefficient $c_v$ = %.4e m^2/s at %f kPa' \
% (self.c_v, self.w_devs[0]/1000.0))
plt.semilogx(t, dh, '+-')
- plt.axhline(y = self.D0)
- plt.axhline(y = self.D50)
- plt.axhline(y = self.D100)
+ plt.axhline(y = self.H0)
+ plt.axhline(y = self.H50)
+ plt.axhline(y = self.H100)
+ plt.axvline(x = self.t50)
plt.grid()
plt.savefig(self.sid + '-loadcurve.' + graphics_format)
plt.clf()