URI:
       tsmall corrections - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
  HTML git clone git://src.adamsgaard.dk/sphere
   DIR Log
   DIR Files
   DIR Refs
   DIR LICENSE
       ---
   DIR commit db7408de0d0dcc2b1b2d951eb69f499961de9d81
   DIR parent aba33eb02abf7b0213f694c21402793291b459a8
  HTML Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
       Date:   Thu, 14 Aug 2014 14:55:37 +0200
       
       small corrections
       
       Diffstat:
         M python/sphere.py                    |      14 ++++++--------
       
       1 file changed, 6 insertions(+), 8 deletions(-)
       ---
   DIR diff --git a/python/sphere.py b/python/sphere.py
       t@@ -4158,7 +4158,6 @@ class sim:
                stopped at the end of the simulation (i.e. flat curve).
                '''
                t = numpy.empty(self.status())
       -        dH = numpy.empty_like(t)
                H = numpy.empty_like(t)
                sim = sphere.sim(self.sid, fluid=self.fluid)
                sim.readfirst(i)
       t@@ -4167,18 +4166,16 @@ class sim:
                    sim.readstep(i)
                    t[i-1]  = sim.time_current[0]
                    H[i-1] = sim.w_x[0]
       -            dH[i-1] = h - sim.w_x[0]
        
                # find consolidation parameters
                self.H0 = H[0]
       -        #self.H100 = h - dh[-1]
                self.H100 = H[-1]
                self.H50 = (self.H0 + self.H100)/2.0
                T50 = 0.197 # case I
                
                # find the time where 50% of the consolidation (H50) has happened by
       -        # linear interpolation. The values in dh are expected to be
       -        # monotonically decreasing! See Numerical Recipies p. 115
       +        # linear interpolation. The values in H are expected to be
       +        # monotonically decreasing. See Numerical Recipies p. 115
                i_lower = 0
                i_upper = self.status()-1
                while (i_upper - i_lower > 1):
       t@@ -4198,9 +4195,10 @@ class sim:
                plt.title('Consolidation coefficient $c_v$ = %.4e m^2/s at %f kPa' \
                        % (self.c_v, self.w_devs[0]/1000.0))
                plt.semilogx(t, dh, '+-')
       -        plt.axhline(y = self.D0)
       -        plt.axhline(y = self.D50)
       -        plt.axhline(y = self.D100)
       +        plt.axhline(y = self.H0)
       +        plt.axhline(y = self.H50)
       +        plt.axhline(y = self.H100)
       +        plt.axvline(x = self.t50)
                plt.grid()
                plt.savefig(self.sid + '-loadcurve.' + graphics_format)
                plt.clf()