URI:
       timprove shear strain plot - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
  HTML git clone git://src.adamsgaard.dk/sphere
   DIR Log
   DIR Files
   DIR Refs
   DIR LICENSE
       ---
   DIR commit 90c69f56c42d99b499c64fc131309115f962253a
   DIR parent 268c33e3139401cd0432a47be85c7c32f52b4e81
  HTML Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
       Date:   Tue, 14 Apr 2015 13:04:08 +0200
       
       improve shear strain plot
       
       Diffstat:
         M python/halfshear-darcy-strain.py    |      46 +++++++++++++++++++++++++------
         M python/halfshear-darcy-strength-di… |       8 +++++++-
       
       2 files changed, 44 insertions(+), 10 deletions(-)
       ---
   DIR diff --git a/python/halfshear-darcy-strain.py b/python/halfshear-darcy-strain.py
       t@@ -13,6 +13,10 @@ from permeabilitycalculator import *
        import matplotlib.pyplot as plt
        from matplotlib.ticker import MaxNLocator
        
       +import seaborn as sns
       +sns.set(style='ticks', palette='Set2')
       +sns.despine() # remove chartjunk
       +
        sigma0 = 20000.0
        #cvals = ['dry', 1.0, 0.1, 0.01]
        #cvals = ['dry', 3.5e-13, 3.5e-15]
       t@@ -85,14 +89,20 @@ for c in cvals:
        
        #fig = plt.figure(figsize=(8,4*(len(steps))+1))
        #fig = plt.figure(figsize=(8,5*(len(steps))+1))
       -fig = plt.figure(figsize=(8,6))
       +#fig = plt.figure(figsize=(8/2,6/2))
       +fig = plt.figure(figsize=(3.74,3.47)) # 3.14 inch = 80 mm, 3.74 = 95 mm
       +#fig = plt.figure(figsize=(8,6))
        
        ax = []
        #linetype = ['-', '--', '-.']
       -linetype = ['-', '-', '-', '-']
       +#linetype = ['-', '-', '-', '-']
       +linetype = ['-', '--', '-.', ':']
        #color = ['b','g','c','y']
       -color = ['b','g','r','y']
       +#color = ['k','g','c','y']
       +color = ['y','g','c','k']
       +#color = ['c','m','y','k']
        for s in numpy.arange(len(cvals)):
       +#for s in numpy.arange(len(cvals)-1, -1, -1):
        
            ax.append(plt.subplot(111))
            #ax.append(plt.subplot(len(steps)*100 + 31 + s*3))
       t@@ -114,11 +124,13 @@ for s in numpy.arange(len(cvals)):
            #ax[0].plot(xdisp[s], zpos_p[s], ',', color = '#888888')
            #ax[0].plot(xdisp[s], zpos_p[s], ',', color=color[s], alpha=0.5)
            ax[0].plot(xdisp_mean[s], zpos_c[s], linetype[s],
       -            color=color[s], label=legend, linewidth=1)
       +            label=legend)#,
       +            #color=color[s],
       +            #linewidth=2.0)
        
            ax[0].set_ylabel('Vertical position $z$ [m]')
            #ax[0].set_xlabel('$\\boldsymbol{x}^x_\\text{p}$ [m]')
       -    ax[0].set_xlabel('Normalized horizontal distance')
       +    ax[0].set_xlabel('Normalized horizontal movement')
        
            #ax[s*4+0].get_xaxis().set_major_locator(MaxNLocator(nbins=5))
            #ax[s*4+1].get_xaxis().set_major_locator(MaxNLocator(nbins=5))
       t@@ -148,10 +160,26 @@ for s in numpy.arange(len(cvals)):
            #ax1.legend(loc='lower right', prop={'size':18})
            #ax2.legend(loc='lower right', prop={'size':18})
        
       -legend_alpha=0.5
       -ax[0].legend(loc='lower right', prop={'size':18}, fancybox=True, framealpha=legend_alpha)
       -ax[0].grid()
       -ax[0].set_xlim([-0.05, 1.01])
       +# remove box at top and right
       +ax[0].spines['top'].set_visible(False)
       +ax[0].spines['right'].set_visible(False)
       +# remove ticks at top and right
       +ax[0].get_xaxis().tick_bottom()
       +ax[0].get_yaxis().tick_left()
       +ax[0].get_xaxis().grid(False) # horizontal grid lines
       +ax[0].get_yaxis().grid(True, linestyle='--', linewidth=0.5) # vertical grid lines
       +
       +# reverse legend order
       +handles, labels = ax[0].get_legend_handles_labels()
       +ax[0].legend(handles[::-1], labels[::-1], loc='best')
       +
       +#legend_alpha=0.5
       +#ax[0].legend(loc='lower right', prop={'size':18}, fancybox=True, framealpha=legend_alpha)
       +#ax[0].legend(loc='best', prop={'size':18}, fancybox=True, framealpha=legend_alpha)
       +#ax[0].legend(loc='best')
       +#ax[0].grid()
       +#ax[0].set_xlim([-0.05, 1.01])
       +ax[0].set_xlim([-0.05, 1.04])
        #ax[0].set_ylim([0.0, 0.47])
        ax[0].set_ylim([0.20, 0.47])
        plt.tight_layout()
   DIR diff --git a/python/halfshear-darcy-strength-dilation-rate.py b/python/halfshear-darcy-strength-dilation-rate.py
       t@@ -13,6 +13,10 @@ import sphere
        from permeabilitycalculator import *
        import matplotlib.pyplot as plt
        
       +import seaborn as sns
       +sns.set(style='ticks', palette='Set2')
       +sns.despine() # remove chartjunk
       +
        pressures = True
        zflow = False
        contact_forces = False
       t@@ -127,7 +131,7 @@ alpha = 1.0
        #ax4.plot(shear_strain[0], f_n_mean[0], '-', label='dry', color='blue')
        #ax4.plot(shear_strain[0], f_n_max[0], '--', color='blue')
        
       -color = ['b','g','r','c']
       +#color = ['b','g','r','c']
        #color = ['g','r','c']
        for c, mu_f in enumerate(mu_f_vals):
        
       t@@ -192,11 +196,13 @@ if zflow or pressures:
        #plt.setp(ax2.get_xticklabels(), visible=False)
        #plt.setp(ax3.get_xticklabels(), visible=False)
        
       +'''
        ax1.grid()
        ax2.grid()
        if zflow or pressures:
            ax3.grid()
        #ax4.grid()
       +'''
        
        legend_alpha=0.5
        ax1.legend(loc='upper right', prop={'size':18}, fancybox=True,