URI:
       ttstack.c - plan9port - [fork] Plan 9 from user space
  HTML git clone git://src.adamsgaard.dk/plan9port
   DIR Log
   DIR Files
   DIR Refs
   DIR README
   DIR LICENSE
       ---
       ttstack.c (4709B)
       ---
            1 /*% cc -gpc %
            2  * These transformation routines maintain stacks of transformations
            3  * and their inverses.
            4  * t=pushmat(t)                push matrix stack
            5  * t=popmat(t)                pop matrix stack
            6  * rot(t, a, axis)        multiply stack top by rotation
            7  * qrot(t, q)                multiply stack top by rotation, q is unit quaternion
            8  * scale(t, x, y, z)        multiply stack top by scale
            9  * move(t, x, y, z)        multiply stack top by translation
           10  * xform(t, m)                multiply stack top by m
           11  * ixform(t, m, inv)        multiply stack top by m.  inv is the inverse of m.
           12  * look(t, e, l, u)        multiply stack top by viewing transformation
           13  * persp(t, fov, n, f)        multiply stack top by perspective transformation
           14  * viewport(t, r, aspect)
           15  *                        multiply stack top by window->viewport transformation.
           16  */
           17 #include <u.h>
           18 #include <libc.h>
           19 #include <draw.h>
           20 #include <geometry.h>
           21 Space *pushmat(Space *t){
           22         Space *v;
           23         v=malloc(sizeof(Space));
           24         if(t==0){
           25                 ident(v->t);
           26                 ident(v->tinv);
           27         }
           28         else
           29                 *v=*t;
           30         v->next=t;
           31         return v;
           32 }
           33 Space *popmat(Space *t){
           34         Space *v;
           35         if(t==0) return 0;
           36         v=t->next;
           37         free(t);
           38         return v;
           39 }
           40 void rot(Space *t, double theta, int axis){
           41         double s=sin(radians(theta)), c=cos(radians(theta));
           42         Matrix m, inv;
           43         int i=(axis+1)%3, j=(axis+2)%3;
           44         ident(m);
           45         m[i][i] = c;
           46         m[i][j] = -s;
           47         m[j][i] = s;
           48         m[j][j] = c;
           49         ident(inv);
           50         inv[i][i] = c;
           51         inv[i][j] = s;
           52         inv[j][i] = -s;
           53         inv[j][j] = c;
           54         ixform(t, m, inv);
           55 }
           56 void qrot(Space *t, Quaternion q){
           57         Matrix m, inv;
           58         int i, j;
           59         qtom(m, q);
           60         for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i];
           61         ixform(t, m, inv);
           62 }
           63 void scale(Space *t, double x, double y, double z){
           64         Matrix m, inv;
           65         ident(m);
           66         m[0][0]=x;
           67         m[1][1]=y;
           68         m[2][2]=z;
           69         ident(inv);
           70         inv[0][0]=1/x;
           71         inv[1][1]=1/y;
           72         inv[2][2]=1/z;
           73         ixform(t, m, inv);
           74 }
           75 void move(Space *t, double x, double y, double z){
           76         Matrix m, inv;
           77         ident(m);
           78         m[0][3]=x;
           79         m[1][3]=y;
           80         m[2][3]=z;
           81         ident(inv);
           82         inv[0][3]=-x;
           83         inv[1][3]=-y;
           84         inv[2][3]=-z;
           85         ixform(t, m, inv);
           86 }
           87 void xform(Space *t, Matrix m){
           88         Matrix inv;
           89         if(invertmat(m, inv)==0) return;
           90         ixform(t, m, inv);
           91 }
           92 void ixform(Space *t, Matrix m, Matrix inv){
           93         matmul(t->t, m);
           94         matmulr(t->tinv, inv);
           95 }
           96 /*
           97  * multiply the top of the matrix stack by a view-pointing transformation
           98  * with the eyepoint at e, looking at point l, with u at the top of the screen.
           99  * The coordinate system is deemed to be right-handed.
          100  * The generated transformation transforms this view into a view from
          101  * the origin, looking in the positive y direction, with the z axis pointing up,
          102  * and x to the right.
          103  */
          104 void look(Space *t, Point3 e, Point3 l, Point3 u){
          105         Matrix m, inv;
          106         Point3 r;
          107         l=unit3(sub3(l, e));
          108         u=unit3(vrem3(sub3(u, e), l));
          109         r=cross3(l, u);
          110         /* make the matrix to transform from (rlu) space to (xyz) space */
          111         ident(m);
          112         m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z;
          113         m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z;
          114         m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z;
          115         ident(inv);
          116         inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x;
          117         inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y;
          118         inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z;
          119         ixform(t, m, inv);
          120         move(t, -e.x, -e.y, -e.z);
          121 }
          122 /*
          123  * generate a transformation that maps the frustum with apex at the origin,
          124  * apex angle=fov and clipping planes y=n and y=f into the double-unit cube.
          125  * plane y=n maps to y'=-1, y=f maps to y'=1
          126  */
          127 int persp(Space *t, double fov, double n, double f){
          128         Matrix m;
          129         double z;
          130         if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */
          131                 return -1;
          132         z=1/tan(radians(fov)/2);
          133         m[0][0]=z; m[0][1]=0;           m[0][2]=0; m[0][3]=0;
          134         m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]);
          135         m[2][0]=0; m[2][1]=0;           m[2][2]=z; m[2][3]=0;
          136         m[3][0]=0; m[3][1]=1;           m[3][2]=0; m[3][3]=0;
          137         xform(t, m);
          138         return 0;
          139 }
          140 /*
          141  * Map the unit-cube window into the given screen viewport.
          142  * r has min at the top left, max just outside the lower right.  Aspect is the
          143  * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!)
          144  * The whole window is transformed to fit centered inside the viewport with equal
          145  * slop on either top and bottom or left and right, depending on the viewport's
          146  * aspect ratio.
          147  * The window is viewed down the y axis, with x to the left and z up.  The viewport
          148  * has x increasing to the right and y increasing down.  The window's y coordinates
          149  * are mapped, unchanged, into the viewport's z coordinates.
          150  */
          151 void viewport(Space *t, Rectangle r, double aspect){
          152         Matrix m;
          153         double xc, yc, wid, hgt, scale;
          154         xc=.5*(r.min.x+r.max.x);
          155         yc=.5*(r.min.y+r.max.y);
          156         wid=(r.max.x-r.min.x)*aspect;
          157         hgt=r.max.y-r.min.y;
          158         scale=.5*(wid<hgt?wid:hgt);
          159         ident(m);
          160         m[0][0]=scale;
          161         m[0][3]=xc;
          162         m[1][1]=0;
          163         m[1][2]=-scale;
          164         m[1][3]=yc;
          165         m[2][1]=1;
          166         m[2][2]=0;
          167         /* should get inverse by hand */
          168         xform(t, m);
          169 }