URI:
       tformulas.tex - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
  HTML git clone git://src.adamsgaard.dk/pism
   DIR Log
   DIR Files
   DIR Refs
   DIR LICENSE
       ---
       tformulas.tex (10927B)
       ---
            1 \newcommand{\lhsI}{
            2 &\displaystyle -{{2\,w_{i+{{1}\over{2}},j}\,N_{i+{{1}\over{2}},j}\,
            3  \left({{\Delta_y\left(v_{i+1,j}\right)+\Delta_y\left(v_{i,j}\right)
            4  }\over{4\,\Delta y}}+{{2\,\delta_{+x}\left(u_{i,j}\right)}\over{
            5  \Delta x}}\right)}\over{\Delta x}} & \\
            6 &\displaystyle -{{w_{i,j+{{1}\over{2}}}\,N_{i,j+{{1}\over{2}}}\,
            7  \left({{\Delta_x\left(v_{i,j+1}\right)+\Delta_x\left(v_{i,j}\right)
            8  }\over{4\,\Delta x}}+{{\delta_{+y}\left(u_{i,j}\right)}\over{
            9  \Delta y}}\right)}\over{\Delta y}} & \\
           10 &\displaystyle {{2\,w_{i-{{1}\over{2}},j}\,N_{i-{{1}\over{2}},j}\,
           11  \left({{\Delta_y\left(v_{i,j}\right)+\Delta_y\left(v_{i-1,j}\right)
           12  }\over{4\,\Delta y}}+{{2\,\delta_{-x}\left(u_{i,j}\right)}\over{
           13  \Delta x}}\right)}\over{\Delta x}} & \\
           14 &\displaystyle {{w_{i,j-{{1}\over{2}}}\,N_{i,j-{{1}\over{2}}}\,\left(
           15  {{\Delta_x\left(v_{i,j}\right)+\Delta_x\left(v_{i,j-1}\right)}\over{
           16  4\,\Delta x}}+{{\delta_{-y}\left(u_{i,j}\right)}\over{\Delta y}}
           17  \right)}\over{\Delta y}} & \\
           18 }
           19 \newcommand{\lhsII}{
           20 &\displaystyle -{{w_{i+{{1}\over{2}},j}\,N_{i+{{1}\over{2}},j}\,
           21  \left({{\Delta_y\left(u_{i+1,j}\right)+\Delta_y\left(u_{i,j}\right)
           22  }\over{4\,\Delta y}}+{{\delta_{+x}\left(v_{i,j}\right)}\over{
           23  \Delta x}}\right)}\over{\Delta x}} & \\
           24 &\displaystyle -{{2\,w_{i,j+{{1}\over{2}}}\,N_{i,j+{{1}\over{2}}}\,
           25  \left({{\Delta_x\left(u_{i,j+1}\right)+\Delta_x\left(u_{i,j}\right)
           26  }\over{4\,\Delta x}}+{{2\,\delta_{+y}\left(v_{i,j}\right)}\over{
           27  \Delta y}}\right)}\over{\Delta y}} & \\
           28 &\displaystyle {{2\,w_{i,j-{{1}\over{2}}}\,N_{i,j-{{1}\over{2}}}\,
           29  \left({{2\,\delta_{-y}\left(v_{i,j}\right)}\over{\Delta y}}+{{
           30  \Delta_x\left(u_{i,j}\right)+\Delta_x\left(u_{i,j-1}\right)}\over{4
           31  \,\Delta x}}\right)}\over{\Delta y}} & \\
           32 &\displaystyle {{w_{i-{{1}\over{2}},j}\,N_{i-{{1}\over{2}},j}\,\left(
           33  {{\delta_{-x}\left(v_{i,j}\right)}\over{\Delta x}}+{{\Delta_y\left(u
           34  _{i,j}\right)+\Delta_y\left(u_{i-1,j}\right)}\over{4\,\Delta y}}
           35  \right)}\over{\Delta x}} & \\
           36 }
           37 \newcommand{\lhsIII}{
           38 &\displaystyle -{{2\,w_{i+{{1}\over{2}},j}\,N_{i+{{1}\over{2}},j}\,
           39  \left({{w_{i+1,j-{{1}\over{2}}}\,\delta_{{\it -y}}(v_{i+1,j})+w_{i+1
           40  ,j+{{1}\over{2}}}\,\delta_{{\it +y}}(v_{i+1,j})+w_{i,j-{{1}\over{2}}
           41  }\,\delta_{{\it -y}}(v_{i,j})+w_{i,j+{{1}\over{2}}}\,\delta_{
           42  {\it +y}}(v_{i,j})}\over{4\,\Delta y}}+{{2\,w_{i+{{1}\over{2}},j}\,
           43  \delta_{{\it +x}}(u_{i,j})}\over{\Delta x}}\right)}\over{\Delta x}} & \\
           44 &\displaystyle -{{w_{i,j+{{1}\over{2}}}\,N_{i,j+{{1}\over{2}}}\,
           45  \left({{w_{i-{{1}\over{2}},j+1}\,\delta_{{\it -x}}(v_{i,j+1})+w_{i+
           46  {{1}\over{2}},j+1}\,\delta_{{\it +x}}(v_{i,j+1})+w_{i-{{1}\over{2}},
           47  j}\,\delta_{{\it -x}}(v_{i,j})+w_{i+{{1}\over{2}},j}\,\delta_{
           48  {\it +x}}(v_{i,j})}\over{4\,\Delta x}}+{{w_{i,j+{{1}\over{2}}}\,
           49  \delta_{{\it +y}}(u_{i,j})}\over{\Delta y}}\right)}\over{\Delta y}} & \\
           50 &\displaystyle {{2\,w_{i-{{1}\over{2}},j}\,N_{i-{{1}\over{2}},j}\,
           51  \left({{w_{i,j-{{1}\over{2}}}\,\delta_{{\it -y}}(v_{i,j})+w_{i,j+{{1
           52  }\over{2}}}\,\delta_{{\it +y}}(v_{i,j})+w_{i-1,j-{{1}\over{2}}}\,
           53  \delta_{{\it -y}}(v_{i-1,j})+w_{i-1,j+{{1}\over{2}}}\,\delta_{
           54  {\it +y}}(v_{i-1,j})}\over{4\,\Delta y}}+{{2\,w_{i-{{1}\over{2}},j}
           55  \,\delta_{{\it -x}}(u_{i,j})}\over{\Delta x}}\right)}\over{\Delta x
           56  }} & \\
           57 &\displaystyle {{w_{i,j-{{1}\over{2}}}\,N_{i,j-{{1}\over{2}}}\,\left(
           58  {{w_{i-{{1}\over{2}},j}\,\delta_{{\it -x}}(v_{i,j})+w_{i+{{1}\over{2
           59  }},j}\,\delta_{{\it +x}}(v_{i,j})+w_{i-{{1}\over{2}},j-1}\,\delta_{
           60  {\it -x}}(v_{i,j-1})+w_{i+{{1}\over{2}},j-1}\,\delta_{{\it +x}}(v_{i
           61  ,j-1})}\over{4\,\Delta x}}+{{w_{i,j-{{1}\over{2}}}\,\delta_{{\it -y}
           62  }(u_{i,j})}\over{\Delta y}}\right)}\over{\Delta y}} & \\
           63 }
           64 \newcommand{\CUfirstInterior}{
           65 &-1 & 0 & 1 \\\hline
           66 \hline
           67 $1$
           68 &$\displaystyle 0$
           69 &$\displaystyle -{{c_{n}}\over{\Delta y^2}}$
           70 &$\displaystyle 0$
           71 \\
           72 \hline
           73 $0$
           74 &$\displaystyle -{{4\,c_{w}}\over{\Delta x^2}}$
           75 &$\displaystyle {{c_{s}+c_{n}}\over{\Delta y^2}}+{{4\,\left(c_{w}+
           76  c_{e}\right)}\over{\Delta x^2}}$
           77 &$\displaystyle -{{4\,c_{e}}\over{\Delta x^2}}$
           78 \\
           79 \hline
           80 $-1$
           81 &$\displaystyle 0$
           82 &$\displaystyle -{{c_{s}}\over{\Delta y^2}}$
           83 &$\displaystyle 0$
           84 \\
           85 }
           86 \newcommand{\CUsecondInterior}{
           87 &-1 & 0 & 1 \\\hline
           88 \hline
           89 $1$
           90 &$\displaystyle {{c_{w}+2\,c_{n}}\over{4\,\Delta x\,\Delta y}}$
           91 &$\displaystyle {{c_{w}-c_{e}}\over{4\,\Delta x\,\Delta y}}$
           92 &$\displaystyle -{{2\,c_{n}+c_{e}}\over{4\,\Delta x\,\Delta y}}$
           93 \\
           94 \hline
           95 $0$
           96 &$\displaystyle -{{c_{s}-c_{n}}\over{2\,\Delta x\,\Delta y}}$
           97 &$\displaystyle 0$
           98 &$\displaystyle {{c_{s}-c_{n}}\over{2\,\Delta x\,\Delta y}}$
           99 \\
          100 \hline
          101 $-1$
          102 &$\displaystyle -{{c_{w}+2\,c_{s}}\over{4\,\Delta x\,\Delta y}}$
          103 &$\displaystyle -{{c_{w}-c_{e}}\over{4\,\Delta x\,\Delta y}}$
          104 &$\displaystyle {{2\,c_{s}+c_{e}}\over{4\,\Delta x\,\Delta y}}$
          105 \\
          106 }
          107 \newcommand{\CVfirstInterior}{
          108 &-1 & 0 & 1 \\\hline
          109 \hline
          110 $1$
          111 &$\displaystyle {{2\,c_{w}+c_{n}}\over{4\,\Delta x\,\Delta y}}$
          112 &$\displaystyle {{c_{w}-c_{e}}\over{2\,\Delta x\,\Delta y}}$
          113 &$\displaystyle -{{c_{n}+2\,c_{e}}\over{4\,\Delta x\,\Delta y}}$
          114 \\
          115 \hline
          116 $0$
          117 &$\displaystyle -{{c_{s}-c_{n}}\over{4\,\Delta x\,\Delta y}}$
          118 &$\displaystyle 0$
          119 &$\displaystyle {{c_{s}-c_{n}}\over{4\,\Delta x\,\Delta y}}$
          120 \\
          121 \hline
          122 $-1$
          123 &$\displaystyle -{{2\,c_{w}+c_{s}}\over{4\,\Delta x\,\Delta y}}$
          124 &$\displaystyle -{{c_{w}-c_{e}}\over{2\,\Delta x\,\Delta y}}$
          125 &$\displaystyle {{c_{s}+2\,c_{e}}\over{4\,\Delta x\,\Delta y}}$
          126 \\
          127 }
          128 \newcommand{\CVsecondInterior}{
          129 &-1 & 0 & 1 \\\hline
          130 \hline
          131 $1$
          132 &$\displaystyle 0$
          133 &$\displaystyle -{{4\,c_{n}}\over{\Delta y^2}}$
          134 &$\displaystyle 0$
          135 \\
          136 \hline
          137 $0$
          138 &$\displaystyle -{{c_{w}}\over{\Delta x^2}}$
          139 &$\displaystyle {{4\,\left(c_{s}+c_{n}\right)}\over{\Delta y^2}}+{{
          140  c_{w}+c_{e}}\over{\Delta x^2}}$
          141 &$\displaystyle -{{c_{e}}\over{\Delta x^2}}$
          142 \\
          143 \hline
          144 $-1$
          145 &$\displaystyle 0$
          146 &$\displaystyle -{{4\,c_{s}}\over{\Delta y^2}}$
          147 &$\displaystyle 0$
          148 \\
          149 }
          150 \newcommand{\CUfirstMargin}{
          151 &-1 & 0 & 1 \\\hline
          152 \hline
          153 $1$
          154 &$\displaystyle 0$
          155 &$\displaystyle -{{c_{n}\,{\it bPP}^2}\over{\Delta y^2}}$
          156 &$\displaystyle 0$
          157 \\
          158 \hline
          159 $0$
          160 &$\displaystyle -{{4\,c_{w}\,{\it aMM}^2}\over{\Delta x^2}}$
          161 &$\displaystyle {{c_{n}\,{\it bPP}^2+c_{s}\,{\it bMM}^2}\over{
          162  \Delta y^2}}+{{4\,\left(c_{e}\,{\it aPP}^2+c_{w}\,{\it aMM}^2\right)
          163  }\over{\Delta x^2}}$
          164 &$\displaystyle -{{4\,c_{e}\,{\it aPP}^2}\over{\Delta x^2}}$
          165 \\
          166 \hline
          167 $-1$
          168 &$\displaystyle 0$
          169 &$\displaystyle -{{c_{s}\,{\it bMM}^2}\over{\Delta y^2}}$
          170 &$\displaystyle 0$
          171 \\
          172 }
          173 \newcommand{\CUsecondMargin}{
          174 C^{u,2}_{-1,-1} &=& \displaystyle -{{c_{w}\,{\it aMM}\,{\it bMw}}\over{4\,\Delta x\,\Delta y}} \\
          175 &+& \displaystyle -{{c_{s}\,{\it aMs}\,{\it bMM}}\over{2\,\Delta x\,\Delta y}} \\
          176 C^{u,2}_{-1,0} &=& \displaystyle {{c_{w}\,{\it aMM}\,\left({\it bMw}-{\it bPw}\right)}\over{4\,\Delta x\,\Delta y}} \\
          177 &+& \displaystyle {{{\it aMM}\,\left(c_{n}\,{\it bPP}-c_{s}\,{\it bMM}\right)}\over{2\,\Delta x\,\Delta y}} \\
          178 C^{u,2}_{-1,1} &=& \displaystyle {{c_{w}\,{\it aMM}\,{\it bPw}}\over{4\,\Delta x\,\Delta y}} \\
          179 &+& \displaystyle {{c_{n}\,{\it aMn}\,{\it bPP}}\over{2\,\Delta x\,\Delta y}} \\
          180 C^{u,2}_{0,-1} &=& \displaystyle {{c_{s}\,\left({\it aMs}-{\it aPs}\right)\,{\it bMM}}\over{2\,\Delta x\,\Delta y}} \\
          181 &+& \displaystyle {{\left(c_{e}\,{\it aPP}-c_{w}\,{\it aMM}\right)\,{\it bMM}}\over{4\,\Delta x\,\Delta y}} \\
          182 C^{u,2}_{0,0} &=& \displaystyle {{c_{n}\,\left({\it aPP}-{\it aMM}\right)\,{\it bPP}+c_{s}\,\left({\it aMM}-{\it aPP}\right)\,{\it bMM}}\over{2\,\Delta x\,\Delta y}} \\
          183 &+& \displaystyle {{\left(c_{e}\,{\it aPP}-c_{w}\,{\it aMM}\right)\,{\it bPP}+\left(c_{w}\,{\it aMM}-c_{e}\,{\it aPP}\right)\,{\it bMM}}\over{4\,\Delta x\,\Delta y}} \\
          184 C^{u,2}_{0,1} &=& \displaystyle {{c_{n}\,\left({\it aPn}-{\it aMn}\right)\,{\it bPP}}\over{2\,\Delta x\,\Delta y}} \\
          185 &+& \displaystyle {{\left(c_{w}\,{\it aMM}-c_{e}\,{\it aPP}\right)\,{\it bPP}}\over{4\,\Delta x\,\Delta y}} \\
          186 C^{u,2}_{1,-1} &=& \displaystyle {{c_{e}\,{\it aPP}\,{\it bMe}}\over{4\,\Delta x\,\Delta y}} \\
          187 &+& \displaystyle {{c_{s}\,{\it aPs}\,{\it bMM}}\over{2\,\Delta x\,\Delta y}} \\
          188 C^{u,2}_{1,0} &=& \displaystyle {{c_{e}\,{\it aPP}\,\left({\it bPe}-{\it bMe}\right)}\over{4\,\Delta x\,\Delta y}} \\
          189 &+& \displaystyle {{{\it aPP}\,\left(c_{s}\,{\it bMM}-c_{n}\,{\it bPP}\right)}\over{2\,\Delta x\,\Delta y}} \\
          190 C^{u,2}_{1,1} &=& \displaystyle -{{c_{e}\,{\it aPP}\,{\it bPe}}\over{4\,\Delta x\,\Delta y}} \\
          191 &+& \displaystyle -{{c_{n}\,{\it aPn}\,{\it bPP}}\over{2\,\Delta x\,\Delta y}} \\
          192 }
          193 \newcommand{\CVfirstMargin}{
          194 C^{v,1}_{-1,-1} &=& \displaystyle -{{c_{w}\,{\it aMM}\,{\it bMw}}\over{2\,\Delta x\,\Delta y}} \\
          195 &+& \displaystyle -{{c_{s}\,{\it aMs}\,{\it bMM}}\over{4\,\Delta x\,\Delta y}} \\
          196 C^{v,1}_{-1,0} &=& \displaystyle {{c_{w}\,{\it aMM}\,\left({\it bMw}-{\it bPw}\right)}\over{2\,\Delta x\,\Delta y}} \\
          197 &+& \displaystyle {{{\it aMM}\,\left(c_{n}\,{\it bPP}-c_{s}\,{\it bMM}\right)}\over{4\,\Delta x\,\Delta y}} \\
          198 C^{v,1}_{-1,1} &=& \displaystyle {{c_{w}\,{\it aMM}\,{\it bPw}}\over{2\,\Delta x\,\Delta y}} \\
          199 &+& \displaystyle {{c_{n}\,{\it aMn}\,{\it bPP}}\over{4\,\Delta x\,\Delta y}} \\
          200 C^{v,1}_{0,-1} &=& \displaystyle {{c_{s}\,\left({\it aMs}-{\it aPs}\right)\,{\it bMM}}\over{4\,\Delta x\,\Delta y}} \\
          201 &+& \displaystyle {{\left(c_{e}\,{\it aPP}-c_{w}\,{\it aMM}\right)\,{\it bMM}}\over{2\,\Delta x\,\Delta y}} \\
          202 C^{v,1}_{0,0} &=& \displaystyle {{c_{n}\,\left({\it aPP}-{\it aMM}\right)\,{\it bPP}+c_{s}\,\left({\it aMM}-{\it aPP}\right)\,{\it bMM}}\over{4\,\Delta x\,\Delta y}} \\
          203 &+& \displaystyle {{\left(c_{e}\,{\it aPP}-c_{w}\,{\it aMM}\right)\,{\it bPP}+\left(c_{w}\,{\it aMM}-c_{e}\,{\it aPP}\right)\,{\it bMM}}\over{2\,\Delta x\,\Delta y}} \\
          204 C^{v,1}_{0,1} &=& \displaystyle {{c_{n}\,\left({\it aPn}-{\it aMn}\right)\,{\it bPP}}\over{4\,\Delta x\,\Delta y}} \\
          205 &+& \displaystyle {{\left(c_{w}\,{\it aMM}-c_{e}\,{\it aPP}\right)\,{\it bPP}}\over{2\,\Delta x\,\Delta y}} \\
          206 C^{v,1}_{1,-1} &=& \displaystyle {{c_{e}\,{\it aPP}\,{\it bMe}}\over{2\,\Delta x\,\Delta y}} \\
          207 &+& \displaystyle {{c_{s}\,{\it aPs}\,{\it bMM}}\over{4\,\Delta x\,\Delta y}} \\
          208 C^{v,1}_{1,0} &=& \displaystyle {{c_{e}\,{\it aPP}\,\left({\it bPe}-{\it bMe}\right)}\over{2\,\Delta x\,\Delta y}} \\
          209 &+& \displaystyle {{{\it aPP}\,\left(c_{s}\,{\it bMM}-c_{n}\,{\it bPP}\right)}\over{4\,\Delta x\,\Delta y}} \\
          210 C^{v,1}_{1,1} &=& \displaystyle -{{c_{e}\,{\it aPP}\,{\it bPe}}\over{2\,\Delta x\,\Delta y}} \\
          211 &+& \displaystyle -{{c_{n}\,{\it aPn}\,{\it bPP}}\over{4\,\Delta x\,\Delta y}} \\
          212 }
          213 \newcommand{\CVsecondMargin}{
          214 &-1 & 0 & 1 \\\hline
          215 \hline
          216 $1$
          217 &$\displaystyle 0$
          218 &$\displaystyle -{{4\,c_{n}\,{\it bPP}^2}\over{\Delta y^2}}$
          219 &$\displaystyle 0$
          220 \\
          221 \hline
          222 $0$
          223 &$\displaystyle -{{c_{w}\,{\it aMM}^2}\over{\Delta x^2}}$
          224 &$\displaystyle {{4\,\left(c_{n}\,{\it bPP}^2+c_{s}\,{\it bMM}^2
          225  \right)}\over{\Delta y^2}}+{{c_{e}\,{\it aPP}^2+c_{w}\,{\it aMM}^2
          226  }\over{\Delta x^2}}$
          227 &$\displaystyle -{{c_{e}\,{\it aPP}^2}\over{\Delta x^2}}$
          228 \\
          229 \hline
          230 $-1$
          231 &$\displaystyle 0$
          232 &$\displaystyle -{{4\,c_{s}\,{\it bMM}^2}\over{\Delta y^2}}$
          233 &$\displaystyle 0$
          234 \\
          235 }