URI:
       tIP_L2NormFunctional.hh - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
  HTML git clone git://src.adamsgaard.dk/pism
   DIR Log
   DIR Files
   DIR Refs
   DIR LICENSE
       ---
       tIP_L2NormFunctional.hh (2800B)
       ---
            1 // Copyright (C) 2012, 2014, 2015  David Maxwell and Constantine Khroulev
            2 //
            3 // This file is part of PISM.
            4 //
            5 // PISM is free software; you can redistribute it and/or modify it under the
            6 // terms of the GNU General Public License as published by the Free Software
            7 // Foundation; either version 3 of the License, or (at your option) any later
            8 // version.
            9 //
           10 // PISM is distributed in the hope that it will be useful, but WITHOUT ANY
           11 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
           12 // FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
           13 // details.
           14 //
           15 // You should have received a copy of the GNU General Public License
           16 // along with PISM; if not, write to the Free Software
           17 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
           18 
           19 #ifndef IP_L2NORMFUNCTIONAL_HH_BSVF8BMQ
           20 #define IP_L2NORMFUNCTIONAL_HH_BSVF8BMQ
           21 
           22 #include "IPFunctional.hh"
           23 
           24 namespace pism {
           25 namespace inverse {
           26 
           27 //! Implements a functional corresponding to (the square of) an \f$L^2\f$ norm of a scalar valued function.
           28 /*! The functional is, in continuous terms 
           29   \f[
           30   J(f) = \int_{\Omega} f^2 \; dA
           31   \f]
           32   where \f$\Omega\f$ is the square domain. Numerically it is implemented using 
           33   Q1 finite elements.
           34 */
           35 class IP_L2NormFunctional2S : public IPInnerProductFunctional<IceModelVec2S> {
           36 public:
           37   IP_L2NormFunctional2S(IceGrid::ConstPtr grid) : IPInnerProductFunctional<IceModelVec2S>(grid) {};
           38   virtual ~IP_L2NormFunctional2S() {};
           39   
           40   virtual void valueAt(IceModelVec2S &x, double *OUTPUT);
           41   virtual void dot(IceModelVec2S &a, IceModelVec2S &b, double *v);
           42   virtual void gradientAt(IceModelVec2S &x, IceModelVec2S &gradient);
           43 
           44 private:
           45   IP_L2NormFunctional2S(IP_L2NormFunctional2S const &);
           46   IP_L2NormFunctional2S & operator=(IP_L2NormFunctional2S const &);  
           47 };
           48 
           49 //! Implements a functional corresponding to (the square of) an \f$L^2\f$ norm of a vector valued function.
           50 /*! The functional is, in continuous terms 
           51   \f[
           52   J(f) = \int_{\Omega} f^2 \; dA
           53   \f]
           54   where \f$\Omega\f$ is the square domain. Numerically it is implemented using 
           55   Q1 finite elements.
           56 */
           57 class IP_L2NormFunctional2V : public IPInnerProductFunctional<IceModelVec2V> {
           58 public:
           59   IP_L2NormFunctional2V(IceGrid::ConstPtr grid) : IPInnerProductFunctional<IceModelVec2V>(grid) {};
           60   virtual ~IP_L2NormFunctional2V() {};
           61   
           62   virtual void valueAt(IceModelVec2V &x, double *v);
           63   virtual void dot(IceModelVec2V &a, IceModelVec2V &b, double *v);
           64   virtual void gradientAt(IceModelVec2V &x, IceModelVec2V &gradient);
           65 
           66 private:
           67   IP_L2NormFunctional2V(IP_L2NormFunctional2V const &);
           68   IP_L2NormFunctional2V & operator=(IP_L2NormFunctional2V const &);  
           69 };
           70 
           71 } // end of namespace inverse
           72 } // end of namespace pism
           73 
           74 #endif /* end of include guard: IP_L2NORMFUNCTIONAL_HH_BSVF8BMQ */