URI:
       tIPLogRatioFunctional.cc - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
  HTML git clone git://src.adamsgaard.dk/pism
   DIR Log
   DIR Files
   DIR Refs
   DIR LICENSE
       ---
       tIPLogRatioFunctional.cc (3535B)
       ---
            1 // Copyright (C) 2013, 2014, 2015, 2016, 2017  David Maxwell
            2 //
            3 // This file is part of PISM.
            4 //
            5 // PISM is free software; you can redistribute it and/or modify it under the
            6 // terms of the GNU General Public License as published by the Free Software
            7 // Foundation; either version 3 of the License, or (at your option) any later
            8 // version.
            9 //
           10 // PISM is distributed in the hope that it will be useful, but WITHOUT ANY
           11 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
           12 // FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
           13 // details.
           14 //
           15 // You should have received a copy of the GNU General Public License
           16 // along with PISM; if not, write to the Free Software
           17 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
           18 
           19 #include "IPLogRatioFunctional.hh"
           20 #include "pism/util/IceGrid.hh"
           21 #include "pism/util/pism_utilities.hh"
           22 
           23 namespace pism {
           24 namespace inverse {
           25 
           26 //! Determine the normalization constant for the functional.
           27 /*! Sets the normalization constant \f$c_N\f$ so that
           28 \f[
           29 J(x)=1
           30 \f]
           31 if  \f$|x| = \mathtt{scale}|u_{\rm obs}| \f$ everywhere.
           32 */
           33 void IPLogRatioFunctional::normalize(double scale) {
           34 
           35   double value = 0;
           36 
           37   double w = 1.0;
           38 
           39   IceModelVec::AccessList list(m_u_observed);
           40 
           41   if (m_weights) {
           42     list.add(*m_weights);
           43   }
           44 
           45   for (Points p(*m_grid); p; p.next()) {
           46     const int i = p.i(), j = p.j();
           47 
           48     if (m_weights) {
           49       w = (*m_weights)(i, j);
           50     }
           51 
           52     Vector2 &u_obs_ij = m_u_observed(i, j);
           53     double obsMagSq = u_obs_ij.u*u_obs_ij.u + u_obs_ij.v*u_obs_ij.v + m_eps*m_eps;
           54 
           55     double modelMagSq = scale*scale*(u_obs_ij.u*u_obs_ij.u + u_obs_ij.v*u_obs_ij.v) + m_eps*m_eps;
           56 
           57     double v = log(modelMagSq/obsMagSq);
           58     value += w*v*v;
           59   }
           60 
           61   m_normalization = GlobalSum(m_grid->com, value);
           62 }
           63 
           64 void IPLogRatioFunctional::valueAt(IceModelVec2V &x, double *OUTPUT)  {
           65 
           66   // The value of the objective
           67   double value = 0;
           68 
           69   double w = 1.;
           70 
           71   IceModelVec::AccessList list{&x, &m_u_observed};
           72 
           73   if (m_weights) {
           74     list.add(*m_weights);
           75   }
           76 
           77   for (Points p(*m_grid); p; p.next()) {
           78     const int i = p.i(), j = p.j();
           79 
           80     if (m_weights) {
           81       w = (*m_weights)(i, j);
           82     }
           83     Vector2 &x_ij = x(i, j);
           84     Vector2 &u_obs_ij = m_u_observed(i, j);
           85     Vector2 u_model_ij = x_ij+u_obs_ij;
           86     double obsMagSq = u_obs_ij.u*u_obs_ij.u + u_obs_ij.v*u_obs_ij.v + m_eps*m_eps;
           87 
           88     double modelMagSq = (u_model_ij.u*u_model_ij.u + u_model_ij.v*u_model_ij.v)+m_eps*m_eps;
           89     double v = log(modelMagSq/obsMagSq);
           90     value += w*v*v;
           91   }
           92 
           93   value /= m_normalization;
           94 
           95   GlobalSum(m_grid->com, &value, OUTPUT, 1);
           96 }
           97 
           98 void IPLogRatioFunctional::gradientAt(IceModelVec2V &x, IceModelVec2V &gradient)  {
           99   gradient.set(0);
          100 
          101   double w = 1.;
          102 
          103   IceModelVec::AccessList list{&x, &gradient, &m_u_observed};
          104 
          105   if (m_weights) {
          106     list.add(*m_weights);
          107   }
          108 
          109   for (Points p(*m_grid); p; p.next()) {
          110     const int i = p.i(), j = p.j();
          111 
          112     if (m_weights) {
          113       w = (*m_weights)(i, j);
          114     }
          115     Vector2 &x_ij = x(i, j);
          116     Vector2 &u_obs_ij = m_u_observed(i, j);
          117     Vector2 u_model_ij = x_ij+u_obs_ij;
          118 
          119     double obsMagSq = u_obs_ij.u*u_obs_ij.u + u_obs_ij.v*u_obs_ij.v + m_eps*m_eps;
          120     double modelMagSq = (u_model_ij.u*u_model_ij.u + u_model_ij.v*u_model_ij.v)+m_eps*m_eps;
          121     double v = log(modelMagSq/obsMagSq);
          122     double dJdw =  2*w*v/modelMagSq;
          123 
          124     gradient(i, j).u = dJdw*2*u_model_ij.u/m_normalization;
          125     gradient(i, j).v = dJdw*2*u_model_ij.v/m_normalization;
          126   }
          127 }
          128 
          129 } // end of namespace inverse
          130 } // end of namespace pism