URI:
       tdiscretization.tex - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
  HTML git clone git://src.adamsgaard.dk/pism
   DIR Log
   DIR Files
   DIR Refs
   DIR LICENSE
       ---
       tdiscretization.tex (6864B)
       ---
            1 \documentclass{article}
            2 \usepackage{amsmath}
            3 \usepackage{hyperref}
            4 \usepackage[left=0.5in,right=0.5in,bottom=1in]{geometry}
            5 \usepackage{fancyhdr}
            6 \parindent=0in \parskip=0.5\baselineskip
            7 
            8 \include{formulas}
            9 
           10 \newcommand{\diff}[2]{\frac{\partial #1}{\partial #2}}
           11 \newcommand{\wcase}[3]{\begin{cases} #1, & w^{n}_{#3} < 0,\\#2, & w^{n}_{#3} \ge 0.\end{cases}}
           12 \newcommand{\wcaseeq}[4]{#1 &= \wcase{#2}{#3}{#4}}
           13 
           14 \begin{document}
           15 \pagestyle{fancy}
           16 \fancyhead[L]{Discretization of the vertical problem for the conservation of energy}
           17 \fancyhead[R]{Constantine Khroulev}
           18 
           19 \section{Introduction}
           20 \label{sec:introduction}
           21 
           22 These notes dress up \textsc{Maxima}-generated formulas needed to
           23 implement (and check the implementation of) the energy balance code in
           24 PISM, including the implementation of boundary conditions.
           25 
           26 \begin{center}
           27   \begin{tabular}{ll}
           28     Symbol or formula & Comment \\
           29     \hline
           30     $\rho_{i}$ & ice density\\
           31     $c_{i}$ & specific heat capacity of ice\\
           32     $k_{i}$ & thermal conductivity of ice\\
           33     $\phi$ & heat flux at a boundary\\
           34     $G = \phi / K$ & enthalpy flux at a boundary (see also (\ref{eq:2}))\\
           35     $\Delta(U_{k}) = U_{k+1} - U_{k-1}$ & centered finite difference\\
           36     $\delta_{+}(U_{k}) = U_{k+1} - U_{k}$ & forward finite difference\\
           37     $\delta_{-}(U_{k}) = U_{k} - U_{k-1}$ & backward finite difference\\
           38     $\operatorname{Up}(U_{k}, \alpha) =
           39     \begin{cases}
           40       \delta_{+}(U_{k}), & \alpha < 0,\\
           41       \delta_{-}(U_{k}), & \alpha \ge 0.
           42     \end{cases}$ & first order upwinding\\
           43   \end{tabular}
           44 \end{center}
           45 
           46 \section{Energy balance in a column of ice}
           47 \label{sec:energy-in-a-column}
           48 
           49 The conservation of energy equation is
           50 
           51 \begin{equation}
           52   \label{eq:1}
           53   \rho_{i} \cdot \frac{dE}{dt} = -\nabla\cdot\mathbf{q} + Q,
           54 \end{equation}
           55 where
           56 $\mathbf{q}$, the enthalpy flux, is defined by
           57 \begin{align}
           58   \label{eq:2}
           59   \mathbf{q} &= -K \nabla E,\\
           60   K(E) &=
           61   \begin{cases}
           62     k_{i}/c_{i}, & E \le E_{s}\quad\text{(cold ice)},\\
           63     K_{0}, & E > E_{s}\quad\text{(temperate ice)}.\\
           64   \end{cases}
           65 \end{align}
           66 Here $E_{s}$ is the pressure-dependent enthalpy of the cold-temperate
           67 transition and $Q$ is the source term consisting of the volumetric
           68 strain heating and basal frictional heating.
           69 
           70 Note that $K$ depends on $E$, so the system defined by equations
           71 (\ref{eq:1}) and (\ref{eq:2}) with appropriate boundary conditions is
           72 nonlinear. The PISM implementation linearizes it by treating the time
           73 derivative implicitly and using the \emph{previous} (or
           74 initial) distribution of $E$ to evaluate $K(E)$.
           75 
           76 PISM uses a shallow approximation of this equation without horizontal
           77 conduction terms. Here I focus on the vertical direction, so
           78 (\ref{eq:1}) becomes
           79 \begin{equation}
           80   \label{eq:3}
           81   \rho_{i} \left( \diff{E}{t} + w\,\diff{E}{z} \right) - \diff{}{z}\left( K \diff{E}{z} \right) = \Phi.
           82 \end{equation}
           83 The term $\Phi$ above combines horizontal advection and the source:
           84 \begin{equation}
           85   \label{eq:4}
           86     \Phi = Q - \rho_{i} \left( u\,\diff{E}{x} + v\,\diff{E}{y} \right).
           87 \end{equation}
           88 
           89 \section{Interior of the column}
           90 \label{sec:interior}
           91 
           92 The discretization scheme for equation (\ref{eq:3}) used in PISM is
           93 \begin{equation}
           94   \label{eq:5}
           95   \discretization.
           96 \end{equation}
           97 Note that (\ref{eq:5}) uses a convex combination of centered finite
           98 difference and first-order upwinding approximations of vertical
           99 advection with the weight $\lambda$.
          100 
          101 For $w \ge 0$ this can be rewritten as
          102 \begin{equation}
          103   \label{eq:6}
          104   (\Lp)\, \El + (\Dp)\, \E_{k} + (\Up)\, \Eu = \Bp,
          105 \end{equation}
          106 and for $w < 0$
          107 \begin{equation}
          108   \label{eq:7}
          109   (\Lm)\, \El + (\Dm)\, \E_{k} + (\Um)\, \Eu = \Bm.
          110 \end{equation}
          111 
          112 Here
          113 \begin{equation}
          114   R^{n}_{k} = \R,\quad\quad \mu = \mufactor.
          115 \end{equation}
          116 
          117 This corresponds to the following lower-diagonal ($L_{k}$), diagonal
          118 ($D_{k}$) and upper-diagonal ($U_{k}$) entries in the tridiagonal
          119 matrix corresponding to the discretization (\ref{eq:5}).
          120 
          121 \begin{align}
          122   \wcaseeq{L_{k}}{\Lm}{\Lp}{k}\\
          123   \notag\\
          124   \wcaseeq{D_{k}}{\Dm}{\Dp}{k}\\
          125   \notag\\
          126   \wcaseeq{U_{k}}{\Um}{\Up}{k}
          127 \end{align}
          128 The right hand side $b$ has elements
          129 \begin{equation}
          130   \label{eq:8}
          131   b_{k} = \Bp
          132 \end{equation}
          133 in both cases.
          134 
          135 \newcommand{\Rm}{R^{n}_{k-\frac{1}{2}}}
          136 \newcommand{\Rp}{R^{n}_{k+\frac{1}{2}}}
          137 \newcommand{\W}{w^{n}_{k}}
          138 \newcommand{\wstack}[2]{\left\{\begin{matrix}#1\\#2\end{matrix} \right\}}
          139 This can be rewritten as
          140 \begin{align}
          141   L_{k} &= -\Rm + \mu\W \wstack{-\lambda}{\lambda - 2},\\
          142   D_{k} &= 1 + \Rm + \Rp + 2\mu\W \wstack{\lambda - 1}{1 - \lambda},\\
          143   U_{k} &= -\Rp + \mu\W \wstack{2 - \lambda}{\lambda}
          144 \end{align}
          145 with
          146 \begin{equation}
          147   \label{eq:12}
          148   \wstack{a}{b} = \wcase{a}{b}{}.
          149 \end{equation}
          150 \section{Neumann B. C.}
          151 \label{sec:neumann-b-c}
          152 
          153 In the case of the initial boundary value system consisting of
          154 equation (\ref{eq:1}) combined with
          155 \begin{align}
          156   \label{eq:9}
          157   \left.\frac{\partial E}{\partial z}\right|_{z = 0} &= G_{0}(t),\\
          158   E(z_{\text{surface}}) &= f(t)
          159 \end{align}
          160 the Neumann boundary conditions at the base are implemented by
          161 combining the generic discretization equation (\ref{eq:5}) with the
          162 equation (\ref{eq:10}) approximating (\ref{eq:9}) and eliminating
          163 $E_{-1}$.
          164 \begin{equation}
          165   \label{eq:10}
          166   \neumannb.
          167 \end{equation}
          168 This gives
          169 \begin{align}
          170   \wcaseeq{D_{0}}{\Dmb}{\Dpb}{0}\\
          171   \notag\\
          172   \wcaseeq{U_{0}}{\Umb}{\Upb}{0}\\
          173   \notag\\
          174   \wcaseeq{b_{0}}{\Bmb}{\Bpb}{0}
          175 \end{align}
          176 
          177 \renewcommand{\Rp}{R^{n}_{\frac{1}{2}}}
          178 \renewcommand{\Rm}{R^{n}_{-\frac{1}{2}}}
          179 \renewcommand{\W}{w^{n}_{0}}
          180 
          181 \newcommand{\rhs}[1]{E^{n}_{#1} + \frac{\Delta t \Phi^{n}_{#1}}{\rho_{i}}}
          182 
          183 Alternatively,
          184 \begin{align}
          185   D_{0} &= 1 + \Rm + \Rp + 2\mu\W \wstack{\lambda - 1}{1 - \lambda}\\
          186   U_{0} &= -\Rp -\Rm + 2\mu\W \wstack{1 - \lambda}{\lambda - 1}\\
          187   b_{0} &= \rhs{0} + 2G_{0}\Delta z \left( -\Rm + \mu\W\wstack{-\lambda}{\lambda - 2} \right).
          188 \end{align}
          189 
          190 When assembling the basal equation we approximate $R_{-\frac{1}{2}}$ by $R_{0}$.
          191 
          192 \newcommand{\ks}{k_{s}}
          193 
          194 Similarly, when the Neumann B.~C. is imposed at the surface ($k =
          195 \ks$), we combine (\ref{eq:5}) with (\ref{eq:11}) and eliminate $E_{\ks+1}$.
          196 \begin{equation}
          197   \label{eq:11}
          198   \neumanns.
          199 \end{equation}
          200 This gives
          201 \begin{align}
          202   \wcaseeq{L_{\ks}}{\Lms}{\Lps}{\ks}\\
          203   \notag\\
          204   \wcaseeq{D_{\ks}}{\Dms}{\Dps}{\ks}\\
          205   \notag\\
          206   \wcaseeq{b_{\ks}}{\Bms}{\Bps}{\ks}
          207 \end{align}
          208 
          209 \renewcommand{\Rp}{R^{n}_{\ks+\frac{1}{2}}}
          210 \renewcommand{\Rm}{R^{n}_{\ks-\frac{1}{2}}}
          211 \renewcommand{\W}{w^{n}_{\ks}}
          212 
          213 Alternatively,
          214 \begin{align}
          215   L_{\ks} &= -\Rp -\Rm + 2\mu\W \wstack{1 - \lambda}{\lambda - 1}\\
          216   D_{\ks} &= 1 + \Rm + \Rp + 2\mu\W \wstack{\lambda - 1}{1 - \lambda}\\
          217   b_{\ks} &= \rhs{\ks} + 2G_{\ks}\Delta z\left( \Rp + \mu\W\wstack{\lambda-2}{-\lambda} \right)
          218 \end{align}
          219 
          220 When assembling the surface equation we approximate $R_{\ks + \frac{1}{2}}$ by $R_{\ks}$.
          221 
          222 \end{document}