DIR Return Create A Forum - Home
---------------------------------------------------------
techsuns
HTML https://techsuns.createaforum.com
---------------------------------------------------------
*****************************************************
DIR Return to: Puzzles && Algorithms
*****************************************************
#Post#: 443--------------------------------------------------
arithmetic progression
By: dinesh Date: February 12, 2013, 10:10 am
---------------------------------------------------------
Given an array of integers A, give an algorithm to find the
longest Arithmetic progression in it, i.e find a sequence i1 <
i2 < … < ik, such that
A[i1], A[i2], …, A[ik] forms an arithmetic progression, and k is
the largest possible.
The sequence S1, S2, …, Sk is called an arithmetic progression
if
Sj+1 – Sj is a constant
#Post#: 444--------------------------------------------------
Re: arithmetic progression
By: kranthipls Date: February 12, 2013, 11:57 pm
---------------------------------------------------------
Is the given array a sequence?
#Post#: 445--------------------------------------------------
Re: arithmetic progression
By: dinesh Date: February 13, 2013, 12:40 am
---------------------------------------------------------
no
just a random array of numbers
#Post#: 446--------------------------------------------------
Re: arithmetic progression
By: kpr29 Date: February 14, 2013, 10:27 pm
---------------------------------------------------------
Pseudo code:
Brute Force method: May be correct may be not
suppose X = x1, x2,....., xn are the numbers
for each element i in X
for each j= i + 1 in x
{
compute | xi - xj | => y
put y in set A if y is not present;
}
//set A contains all the contant value
// next compute set B with two loops and count number of pairs
have constant values from set A
//find the max from set B and we will know what is the
corresponding constant from set A => generate the longest
seqence.
@Majeti: I think i made my idea clear....... I have thought of a
solution with graph... If u validate this, then I will share the
other one which I thought about.
kp.
#Post#: 450--------------------------------------------------
Re: arithmetic progression
By: dinesh Date: February 15, 2013, 12:32 am
---------------------------------------------------------
@KP: I feel it is correct - what is its complexity?
*****************************************************